在挂三档时,用拨叉3拨动接合套8并带动滑块2一起向左移动。当滑块左端面与锁环9的缺口12的端面接触时,便推动锁环9压向齿轮1,使锁环9的内锥面压向齿轮1的外锥面。由于两锥面具有转速差(n1>n9),所以一接触便产生摩擦作用。齿轮1即通过摩擦作用带动锁环相对于接合套超前转过一个角度,直到锁环9的缺口12与滑块的另一侧面,接触时,锁环便与接合套同步转动。此时,接合套的齿与锁环的齿错开了约半个齿厚,从而使接合套的齿端倒角面与锁环相应的齿端倒角面正好互相抵触而不能进入啮合。当变速器由二档换入三档(直接档)时,接合套8从二档退到空档,齿轮1和接合套 8连同锁环9都在其本身及其所联系的一系列运动件的惯性作用下,继续沿原方向旋转。驾驶员的换档操纵力通过接合套作用于锁环的锁止角斜面上,在此斜面上产生的法向压力为N。法向压力N可分解为轴向力F1和切向力F2。切向力F2所形成的力矩M2有使锁环相对于接合套向后(用箭头指示M2)转动的趋势,称为拨环力矩。轴向力 Fl则使齿轮1 通过摩擦锥面对锁环9作用一与转动方向同向摩擦力矩M1(用箭头指示M1)。这一摩擦力矩M1阻止锁环相对接合套向后退转。如果拨环力矩M2大于摩擦力矩M1,则锁环9即可相对于接合套向后退转一个角度,以便二者进入接合;若M2<M1(此时还有滑块对锁环缺口一侧的阻挡作用),则二者相对位置不变,不可能进入接合。在设计同步器时,适当地选择锁止角和摩擦锥面的锥角,便能保证在达到同步(n1=n9)之前,齿轮1施加在锁环9上的摩擦力矩M1总是大于切向力F2形成的拨环力矩M2,不论驾驶员通过操纵机构加在接合套上的轴向推力有多大,接合套齿端与锁环齿端总是互相抵触而不能接合。
锁环9对接合套的锁止作用是由于上述摩擦力矩M1造成的。因为此摩擦力矩的作用与锁环9(及与之连接的接合套8、花键毂7、变速器输出轴及整个汽车等)和齿轮1(及与之连接的离合器从动部分和变速器内部分齿轮)两部分的转动惯性有关,故称此种同步器为"惯性式"同步器。
自行增力式同步器
这种同步器与常压式和惯性式同步器一样,也是利用摩擦原理实现同步,主要区别在于同
步环产生的摩擦力矩由于同步环内的弹簧片作用而得到成倍的增长。图3所示为波尔舍自行增力式同步器。两个齿轮通过轴承空套在第二轴上,而花键毂2与第二轴固定连接,毂的外缘有三个凸起的轴向键,与接合套1上的三个相应键槽配合。接合套与毂一起转动,
并可相对于毂轴向移动。接合齿圈3与常啮合齿轮固定连接。弹性的开口同步环4、滑块5、支承块6及两个弹簧片7均装在接合齿圈内,并用挡片8加以轴向限位。滑块5的凸起部插于同步环的开口处,处于空档时两侧有间隙,支承块内圆上的凸起则嵌入接合齿圈轴颈上相应的槽中,槽比凸起稍宽些。同步环外表面沿轴向两端制出外锥面,而接合齿圈和接合套的两侧齿端也制出与其配合的内锥面。
只要接合套与待啮合齿轮之间存在转速差,弹簧片的支承力就阻止同步环直径缩小,因而也就阻止了接合套移动。在二者的转速差为零(同步)时,弹簧片卸除载荷,即以右弹簧片的上端为支点,弹簧片伸张,其下端顶住支承块凸起右侧,推动接合齿圈连同低档齿轮一道顺时针方向转动一个角度,使弹簧片松弛,于是阻止同步环直径缩小的支承力消失。此时,在不大的换档力作用下,接合套便可压缩同步环,与右侧的接合齿圈接合,而同步环处于接合套的屋顶状凹槽里,被可靠地定位。因此,在挂档位置,毋需采用一般变速器所必须设置的自锁装置。
在图3所示的右视图中,该齿轮接合齿圈内左右各有一个弹簧片,上述换档过程中仅由右侧的弹簧片起作用。当从下一个档位换到该档时,便由左侧的弹簧片施加径向力,加速同步过程。
由于弹簧片的增力作用,故这种同步器能使换档更为省力并且迅速。
12月22日,“在一起 去远方”全新星纪元ET增程四驱媒体品鉴暨上
12月18日,上汽大众 Pro 家族试驾品鉴暨 40 周年媒体答谢会”在
12月17日,上汽名爵MG ES5全国媒体长测试驾品鉴会合肥站活动在巢
12月17日,“硬刚·全球直播安全碰撞暨风云A8L上市发布会”在安
在发布会外场,十余辆车辆经典涂装iCAR V23亮相,构成一幅年轻人